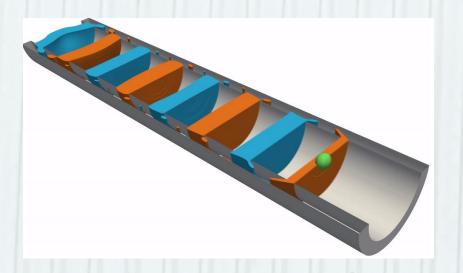
High Gradient, High Field Dielectric Wakefield Acceleration Experiments @ATF

AE39 Experimental Report

P. D. HOANG
PI: J.B. Rosenzweig
PARTICLE BEAM PHYSICS LAB

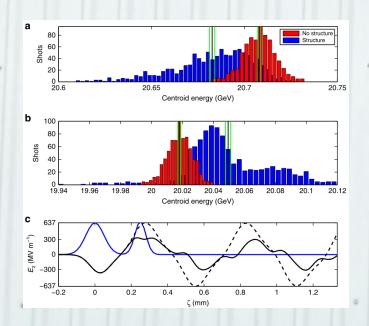

UCLA

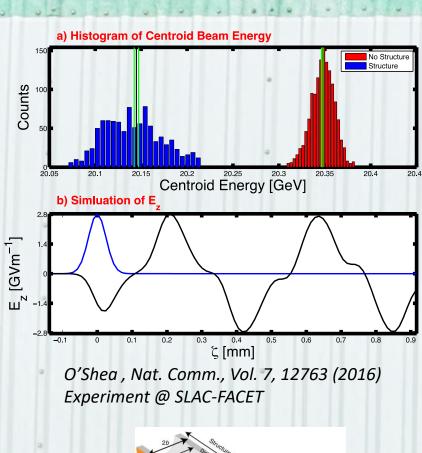
Brookhaven National Lab October 26th-27th 2016

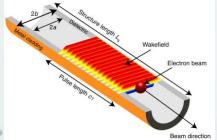
Outline

- Dielectric wakefield acceleration (DWA)
 - Background
 - Some highlights
- AE39:
 - Previous DWA results
 - Transverse wakefield and slab-symmetry
 - Recent result on dielectric woodpile.
- Future outlook and summary

DWA in a Nutshell

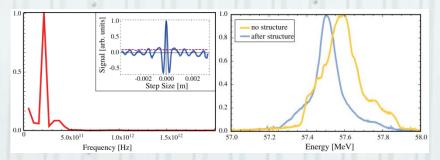


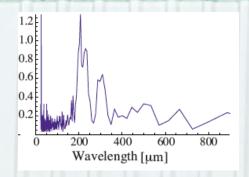

- Drive beam gives up its energy and sets up wakefield.
- Drive-witness modality. For $\beta \sim 1$, beam and wake stay in phase.
- Cherenkov radiation $\omega = \vec{k} \cdot \vec{v}$
- High gradient: simple scaling law $E_Z \sim \frac{Q}{a \sigma_z}$
- DWA science has been growing over the years:
 - Coherent THz radiation source
 - High gradients: materials, fabrication
 - Transformer ratio: beam shaping
 - Transverse wakefield: beam breakup, trajectory kicks.
 - Advanced geometry: slab-symmetric, photonic crystals


DWA Highlights

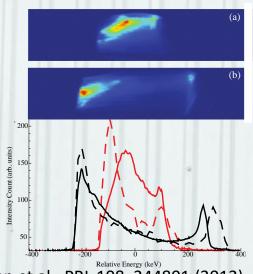
DWA milestones:

- Measure decelerating energy gradient of 1.347GeV/m. Inferred accelerating gradient ~2.8GeV/m
- 80% drive-witness energy transfer
- Structure robustness: 28 hours of contiguous operation or 100K pulses

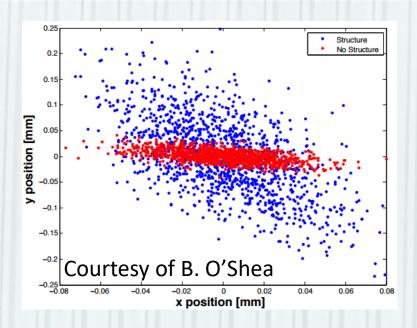




AE39: Previous Results

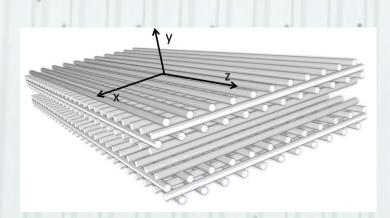

- AE39 contributions to DWA science:
 - Andonian, APL 98, 202901 (2011)
 - Andonian, PRL 108, 244801 (2012)
 - Andonian, PRL 113, 264801(2014)
 - Hoang Woodpile DWA in prep. (2016)

G. Andonian et al., PRL 113, 264801 (2014) Narrow band THz and decc. from Bragg @ BNL ATF

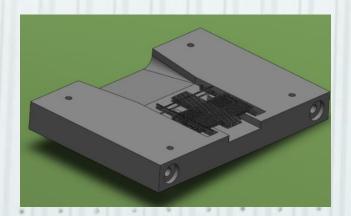

G. Andonian et al., APL 98, 202901 (2011) Selective mode excitation in tube @BNL ATF

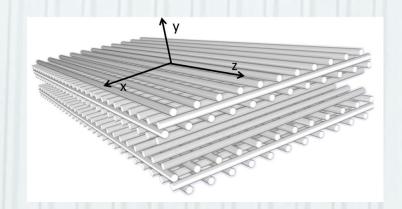
G. Andonian et al., PRL 108, 244801 (2012) Accel. in slab @ BNL ATF

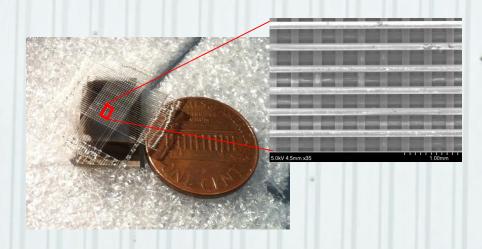
Transverse Wake and Slab Symmetry


- Transverse deflecting wakes
 - Simple scaling law $E_{\perp} \sim \frac{Q}{a^3}$
 - Beam breakup instability, trajectory kicks
 - Need to be controlled for operation in long DWA structure.
 - Promising solution: slab-symmetric structure
- Slab-symmetric structures
 - Cartesian symmetry
 - Compatible with very small scale layerby-layer fabrication
 - Deflecting kicks vanish in limit of infinitely flat beam[1]

AE39: Recent Experiment

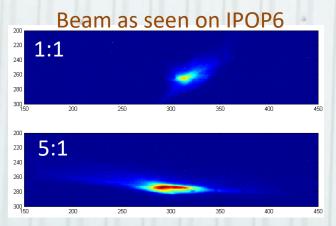

- Characterization of wakefield from dielectric woodpile structure
- Comparing wakefield spectra from round vs. flat beam

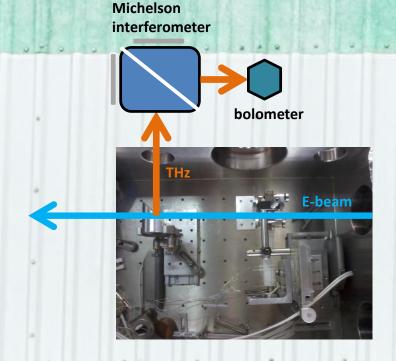

See if we can observe transverse wakefield reduction

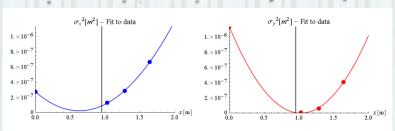


Dielectric Woodpile Structure

- Structure features
 - Slab symmetric
 - Metal free, expandable to 3D bandgap confinement structure.
 - Sapphire rods (125um), $\epsilon \approx 10$, high damage fluence.
 - Accelerating channel 250um
 - Round rods, $\frac{1}{\epsilon}$ field shielding factor.
 - Manual assembly

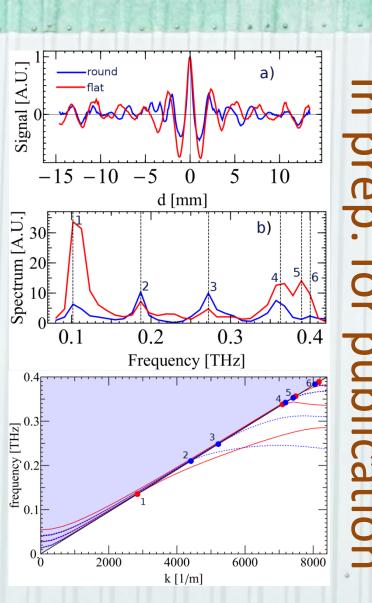






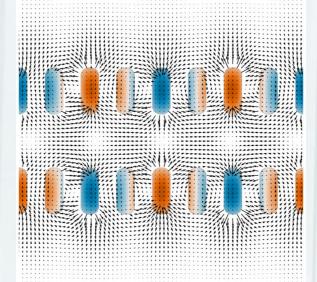
Woodpile Experiment

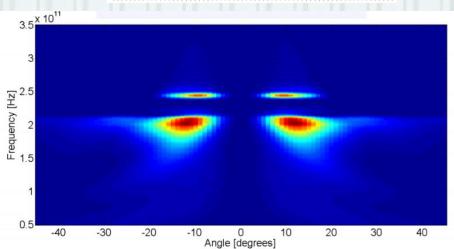
- HeNe laser and motorized stages for alignment
- Setup used Michelson interferometry + He-cooled bolometer
- Waist fitting to determine beam size
 - Round (1:1)
 - Wide (5:1)
- Bunch length $\sigma_z \approx 250 \mu m$
- ~100% (200pC) charge transmission through structure
- Beam energy 57.6MeV



Summary ehx = 13.59 mm-mrad βx (waist) = 0.193 m σx (waist) = 152.5 μm eNy = 0.+4.53 i mm-mrad βy (waist) = 0.+0.037 i m σy (waist) = 0.+38.7 i μm σx (sample) = 297.666 μm σy (sample) = 64.7623 μm Beam ratio(sample) = 4.59629

Waist fitting


Results to be Published


- Measured wakefield spectra driven by round/flat beam
- Match wakefield excitation pattern to eigen mode simulation which gives both frequencies and symmetries
- Results: flat beam couples better to accelerating modes, and less efficiently to transverse modes. Agree with analytical prediction. In preparation for publication.

AE39 Future Plans

- Testing new structures with well established methods
- Wakefield characterization of scaled up DLA structure
 - Maxwell equations are scalable.
 - Easier fabrication
 - Availability of drive beam
 - Material studies
- Example: DIRNDL
 - Material SU-8
 - Modal characterization: excitation, far field imaging, etc.

Summary

- Wakefield mechanism capable of generating high accelerating gradient in compact scale.
- AE39 contribution:
 - THz radiation: selective excitation of modes
 - Demonstration of acceleration/deceleration in slab-symmetric structures
 - Novel photonic crystal based structure: Bragg structure
 - Newest result on woodpile structure directly addresses transverse wakefield reduction in slab-symmetric structure.
- Acknowledgement:
 - BNL, ATF: M. Fedurin, P. Jacob, K. Kusche, M. Polyansky, G. Sternby,
 C. Swinson, I. Pogorelsky, M. Palmer, I. Ben-Zvi
 - UCLA: G. Andonian, I. Gadjev, B. Naranjo, B. O'Shea (now SLAC), N. Sudar, Y. Sakai, O. Williams, J. Rosenzweig
 - Office of Science's SCGSR program.